The Tangent FFT
نویسنده
چکیده
The split-radix FFT computes a size-n complex DFT, when n is a large power of 2, using just 4n lgn−6n+8 arithmetic operations on real numbers. This operation count was first announced in 1968, stood unchallenged for more than thirty years, and was widely believed to be best possible. Recently James Van Buskirk posted software demonstrating that the split-radix FFT is not optimal. Van Buskirk’s software computes a sizen complex DFT using only (34/9 + o(1))n lgn arithmetic operations on real numbers. There are now three papers attempting to explain the improvement from 4 to 34/9: Johnson and Frigo, IEEE Transactions on Signal Processing, 2007; Lundy and Van Buskirk, Computing, 2007; and this paper. This paper presents the “tangent FFT,” a straightforward in-place cachefriendly DFT algorithm having exactly the same operation counts as Van Buskirk’s algorithm. This paper expresses the tangent FFT as a sequence of standard polynomial operations, and pinpoints how the tangent FFT saves time compared to the split-radix FFT. This description is helpful not only for understanding and analyzing Van Buskirk’s improvement but also for minimizing the memory-access costs of the FFT.
منابع مشابه
Using WPT as a New Method Instead of FFT for Improving the Performance of OFDM Modulation
Orthogonal frequency division multiplexing (OFDM) is used in order to provide immunity against very hostile multipath channels in many modern communication systems.. The OFDM technique divides the total available frequency bandwidth into several narrow bands. In conventional OFDM, FFT algorithm is used to provide orthogonal subcarriers. Intersymbol interference (ISI) and intercarrier interferen...
متن کاملTangent Bundle of the Hypersurfaces in a Euclidean Space
Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...
متن کاملPara-Kahler tangent bundles of constant para-holomorphic sectional curvature
We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...
متن کاملUniversal Approximator Property of the Space of Hyperbolic Tangent Functions
In this paper, first the space of hyperbolic tangent functions is introduced and then the universal approximator property of this space is proved. In fact, by using this space, any nonlinear continuous function can be uniformly approximated with any degree of accuracy. Also, as an application, this space of functions is utilized to design feedback control for a nonlinear dynamical system.
متن کامل